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Electromotive force for an anisotropic turbulence: Intermediate nonlinearity
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A nonlinear electromotive force for an anisotropic turbulence in the case of intermediate nonlinearity is
derived. The intermediate nonlinearity implies that the mean magnetic field is not strong enough to affect the
correlation time of a turbulent velocity field. The nonlinear mean-field dependencies of the hydrodynamic and
magnetic parts of the effect, turbulent diffusion, and turbulent diamagnetic and paramagnetic velocities for
an anisotropic turbulence are found. It is shown that the nonlinear turbulent diamagnetic and paramagnetic
velocities are determined by both an inhomogeneity of the turbulence and an inhomogeneity of the mean
magnetic fieldB. The latter implies that there are additional terms in the turbulent diamagnetic and paramag-
netic velocities< VB2 and o (B- V)B. These effects are caused by a tangling of a nonuniform mean magnetic
field by hydrodynamic fluctuations. This increases the inhomogeneity of the mean magnetic field. It is also
shown that in an isotropic turbulence the mean magnetic field causes an anisotropy of the nonlinear turbulent
diffusion. Two types of nonlinearities in magnetic dynamo determined by algebraic and differential equations
are discussed. Nonlinear systems of equations for axisymmefyidynamos in both spherical and cylindrical
coordinates are derived.

PACS numbd(s): 47.65+a

I. INTRODUCTION 3uop){th-(Vxh)) and uq is the magnetic permeability of
the fluid (see Refs[6—8]). Such splitting of thex effect is
Turbulent motions of a conducting fluid can generateintroduced in nonlinear dynamo because the growing mag-
large-scaleilmean magnetic field and small-scale magnetic netic field reacts differently on the hydrodynamic and the
fluctuations. Many dynamo modelsee, e.g., Refd1-5])  magnetic parts of ther effect (see Refs[9—11]). The back
are kinematid(i.e., they predict a magnetic field that grows reaction of the mean magnetic field on the hydrodynamic
without limit). In order to find, e.g., the magnitude of the part of thea effect is almost instantaneotsf the order of a
magnetic field, the nonlinear effects which limit the field .,5racteristic correlation time of the turbuleneg=1/uo,

growth must be taken into account. The nonlinearities in tur'vvhereuo is the characteristic turbulent velocity in the maxi-

bul_ent_ mean-field dynamo imply an effect_ of a mean Mags,,m scale of turbulent motionlg). However, the character-
netic field on thex effect, turbulent magnetic diffusion, tur-

. . . . istic time 7, of the back action of the mean magnetic field on
bulent diamagnetic velocity, etc. The mean magnetic field the maanetic part of the effect is much laraer tham for
is determined by an induction equation 9 P 9 0
large magnetic Reynolds numbers. Recent calculations per-
IBlot=V X[VX B+ E]+ 7yAB (1) formed in Ref.[12] for isotropic turbulence demonstrated
that the totalhydrodynamic plus magnejiex effect is non-

(see, e.g., Ref§1-5]) whereV is a mean velocitye.g., the linearized in the form of a quenching, i.e., by replaciag
differential rotation, 7 is the magnetic diffusion due to the with a®(B), where®(B) is a decreasing function of the
electrical conductivity of fluid,£=(uxh) is the turbulent mean magnetic field. Note, however, that in real astrophysi-
electromotive forcey andh are fluctuations of the velocity cal applications the turbulence is anisotropic. Siage 7o,

and magpnetic field, respectively, angular brackets denote athe back reaction of the magnetic field on the magnetic part
eraging over an ensemble of turbulent fluctuations. The turef the « effect cannot, in general, be reduced to a simple
bulent electromotive force in kinematic dynamo for an iso-quenching but must be described by an evolutionary differ-

tropic turbulence is given by ential equationsee Refs[9—11]). Thus there are two main
) types of the nonlinearities for the effect: a quenching of
E=ay’B+UgxB— 71V xXB (2)  the totala effect in the form of an algebraic equati¢see

Ref.[12]) and a nonlinear evolution of the magnetic part of
(see Ref[3]), whereal) = —(1/3)(7u-(VXu)) is the hy-  the a effect which is determined by a differential equation
drodynamic part of thex effect, U= —(1/2)V(7u?) is the  (see Refs[9—11]). In spite of the fact the nonlinear effect
turbulent diamagnetic velocityyr= (1/3)( 7u?) is the turbu- s well studied for isotropic turbulence, effects of the mean
lent magnetic diffusion, and is the correlation time of the magnetic field on the turbulent diffusion and turbulent dia-
turbulent velocity field. magnetic velocity is still poorly understood.

In the nonlinear stage of evolution of the mean magnetic In the present paper a nonlinear electromotive force for an
field, the a effect, turbulent diffusion and turbulent anisotropic turbulence in the case of intermediate nonlinear-
diamagnetic velocity depend on the mean magnetic feld ity is calculated, i.e., the nonlinear mean-field dependencies
The total @ effect in nonlinear dynamo is split into hydro- of the hydrodynamic and magnetic parts of theeffect,
dynamic o) and magnetica™ parts, wherea™=(7/  turbulent diffusion, turbulent diamagnetic, and paramagnetic
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velocities for an anisotropic turbulence are found. The inter-
mediate nonlinearity implies that the mean magnetic field is
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<Ui(X)Uj(Y)>=J (ui(kp)uj(kz))

not strong enough to affect the correlation time of the turbu-

lent velocity field. In the case of isotropic turbulence the

obtained results for the effect are in agreement with those
obtained in Ref[12]. We demonstrated that the nonlinear

turbulent diamagnetic and paramagnetic velocities are deter-

X expli(kq-x+ky-y) d3k, dk,

- [ty Rexpik

mined by both an inhomogeneity of the turbulence and an

inhomogeneity of the mean magnetic fi@d The latter im-

plies that there are additional terms in the turbulent diamag-

netic and paramagnetic velocitiesVB2 and «(B-V)B.
These effects are caused by a tangling of a nonuniform me
magnetic field by hydrodynamic fluctuations.

Il. GOVERNING EQUATIONS

In this section we derive an equation for the nonlinear
turbulent electromotive force for large hydrodynamic (Re

=lgug/v>1) and magnetic (Rmlquy/7>1) Reynolds
numbers, where’ is the kinematic viscosity. We will use a
mean field approach in which the magneti,and velocity,

v, fields are divided into the mean and fluctuating pais:
=B+h, v=V+u, where the fluctuating parts have zero
mean valuesyY =(v)=const, andB=(H). The momentum
equation and the induction equation for the turbulent fields
andh in a frame moving with a local velocity of the large-
scale flowsV are given by

Julat=—VP'Ip—[hx (VXB)+Bx(Vxh)]/(jop)+T

+vAu+F, /p, (€©))

ohlat=V X (UXB— 7V X h)+G, (4)

andV-u=0, whereP’ are the fluctuations of the hydrody-
namic pressurel, is a random external stirring force, is
the density of fluid, the nonlinear term¥ @ndG) are given
by T={(u-V)u)—(u-V)u+[{(hXx(Vxh))—hx(Vxh)]/
(mop), and G=V X (uxh—(uxh)). The fluctuations are

concentrated in small scales. Therefore the derivatives of the

fij(k,R)=J (ui(k+K/2)uj(—k+K/2))expiK - R)d*K,

hereR=(x+y)/2, r=x—y, K=k;+ks, k=(k;—k,)/2,

andK correspond to the large scales, andndk to the
small ones(see, e.g., Ref§13,14)). The others second mo-
ments have the same form, e.g.,

h”(k,R):f (hi(k+K/2)h;(—k+K/2))

X exp(iK - R)d*K/ wop,

Kij(k,R)=J (hi(k+K/2)uj(—k+K/2))expiK - R)d*K.

Note that the two-scale approach is valid when
(1/B)(dB/dR)<I,*, where B=|B|. Now we derive the
equations for the correlation functiofis,(k,R), hym(k,R),
and «,(k,R)

Ifymldt=i(k-B)®+ Mpym+ Fom— 20K2fhm, (7)
hpml t=—i(k-B)® ,m+ Rym— 27k?hpm, (8
Iknm! 9t =1 m+ Com— (v+ 7)K?Kknm, 9
lnm=1(K-B)(fym=hpm) +(1/2)(B- V) (f 0+ hi )
—fimBnj+hnj(2Pi(K) = 8 Bij , (10)

where

Fom(K,R)=(Fr(k, R)Um(—k,R)) +(Un(k, R)F r( —K,R)),

q)nm(kaR):[Knm(kaR)_ Kmn(_krR)]/MOPr

large-scale fields are small in comparison with the deriva-

tives of the turbulent fields. Now let us derive equations for

the second moments. For this purpose we rewrite ER)s.

F(k,R,t)=kXx[kXxF,(k,R)]/K?p,

and(4) in a Fourier space and repeat twice the vector muland Bj;=dB;/JR;. The third moment is given by

tiplication of Eq. (3) by the wave vectok. The result is
given by

dup(k,0)/dt=[2Pi(k) = 8,159 (h; B)/(120p)

+SO(h;B)/ (pop) = Trm— vK2Uy,  (5)

dhy(k,t)/dt=8P(u;B) -5 (u;B) + G,— 7k?h,, (6)

where S9(a;A)=ifa;(k—Q)Q;A,(Q)d*Q, SV (a;A)
=ik;fa,(k—Q)A;(Q)d*Q, T=kx (kxT)/k? P;(k)=4;
—Kij, Omnis the Kronecker tensor arg, =kik; /k?. We use
the two-scale approach, i.e., a correlation function

Mnm(kert):<Tn(k)um(_k)>+<un(k)Tm(_k!t)>- The ex-
pressions for the remaining momems,, andC,,, are simi-
lar. In Egs. (7) and (8) we neglected the terms<(B
-V®) kym and «B,kj, because they contribute to the
modification of the Ampee force caused by the turbulence
effect (see, e.g., Refd18,19), where V(R =4/4R. In Eq.
(9) we neglected the second and higher derivatives &ver
and terms which are of the order of RAW ™ (B, , .1, him)
and Re *VR(B; : fym:hnm) -

Now we split all correlation
fam:Nnm: Knm @nm) iNto two parts, e.g.fom=fMN+f)
where  fN=[f (k,R)+f,n(—k,R)]/2 and )
=[fom(k,R)— fom(—k,R)1/2. The tensorf > describes the
helical part of the tensor, where&S) describes the nonhe-
lical part of the tensor. Such splitting is caused, e.g., by

functions (i.e.,
(S
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different times of evolution of the helical and nonhelical fO =09 1jrk-B)DdMN (13

parts of the magnetic tensor. In particular, the characteristic

time of evolution of the tensan{Y) is of)the orderr, while DM = (14 )L pop)~ 12 (k- B)(FOI (D)

the relaxation time of the componeny?), is of the order of on on on on

o Rm (see, e.g., Refl11]). By means of Eqs(7)—(9) we +Bj(FION +h(OW) — B ({00 +h(OV)

derive equations for the helical and nonhelical parts of these (N) (N)

tensors. We assume also that the magnetic ten§tris a +2Bp;(NinyKpn = oy Kpm) (14

given and is determined by some evolutionary equatsae _ _ _

Sec. V and Refg10,11). O =2i7(1+2¢) H(uop) *(k-B)(F =)
+O(Bnm), (15)

lll. ELECTROMOTIVE FORCE

=2(k-B7)2 =k ki /K2, £ON) 09 de-
Equations(7)—(9) describe an evolution of the second where =2 (k-B7)/uop, kij=kik;/k*, {7 and fi™ de
moments. Equations of this type raise, as usual, a question 8Fr|be the nonhelical and helical tensors of the background
turbulence, and we took into account thaf(B=0)=0.

closing the equations for the higher moments. Various ap- ) .
proximate methods have been proposed for the solution of  USing EAs(11)~(15) we calculate the electromotive force

problems of this typésee, e.g., Ref§15—17). The simplest Si(r=0)=f5i(k)(cgl|)<, where the Fourier compone(k)
closure procedure is the approximation, which is widely = (#0P/2)eimn®qm(K), and ey is the Levi-Civita tensor.
used in the theory of kinetic equations. For magnetohydro he electromotive force is given by

dynamic turbulence this approximation was used in [Réf.

(see also Refd18,19). In the simplest variant, it allows us &i(r=0)=a;;Bj+bijBjx, (16)
to express the third moments in terms of the second MO: here
ments:
_£(0) (N) _ KL(0) . _
M e M= — %1 RN _RO)— _ %ﬂ a; =l f 1+ ) teimdk(FD —hidk,  (17)
T T
_ (0 _
Com—CO = — Knm™ Knm bijk:f T(1+ ) 1[8ijn(f(k(r)1N)+h(k?1N))_28imnkmjhswll\l<)]dk-
7(K) (18)

The superscript (0) corresponds here to the backgroun
magnetohydrodynamic turbulen¢é is a turbulence withB
=0), and 7(k) is the characteristic relaxation time of the
statistical moments.

The 7 approximation is in general similar to the eddy
damped quasinormal MarkowigiEDQNM) approximation. . -
However, some principal difference exists between these twésee Appendix A where a;;(B)=(a;;+2;)/2, U.(B)
approachessee Refs[15,17]). The EDQNM closures do not =sk{iaij 12,  VvMN(B)=(1/2B)Q(B)VB?,  kik(B)=
relax to equilibrium, and this procedure does not describe- (b{7)+b{Z)/2, b= &ijmKm(A)+Ajx, the turbulent
Fhroperly the mot'qonsv:/r)tr:_hetﬁquléIg:)(gllilrlcI ;t}ate mtﬁontrgst Omagnetic  diffusion  is  7(B)= 7Y+ 52, ;7i(jl)

e 7 approximation. Within the eory, there isno _ ~2)_ b
dynamically determined relaxation time, and no slightly per- . Pi(B)Q(B), 7= Rij (M) + (EipAiip T 2 ikpAikp) 4+
turbed steady state can be approadtéd. In the 7 approxi- Kij (A)=(Kpp(A) 6 __Kii(A))/Z_' B=4BI(uo\N2pop), B
mation, the relaxation time for small departures from equi-_:(ﬁ|’ the tensorA; is determined by Eq(AS5), the func-
librium is determined by the random motions in the tions Kij(A) andQ(pB) are determined by Eq$A13) and
equilibrium state, but not by the departure from equilibrium(A18), respectively(see Appendix A The tensorw;;(B) is
[15]. We use ther approximation, but not the EDQNM given by
approximation because we consider a case with
1ol V®B2|/ ug<{pu?). As follows from the analysis by Ref.
[15] the 7 approximation describes the relaxation to equilib-
rium state (the background turbulengenuch more accu- 09 (S
rately than the EDQNM approach. X(fhm’ —ham) dk. (20

Now we assume thavk?’<pk?<7~! for the inertial _ .
range of turbulent fluid flow. We also assume that the charNOW we calculate t2he veIgcnjU(B).. The(z)condmonV-y
acteristic time of variation of the mean magnetic filds =0 implies that 'é( S-uk®)=0, ie., K Tam=0. This
substantially longer than the correlation timék) for all ~ Yields (=ikn+V{P/2)f 0(k,R)=0. Using the change

Equations(lﬁ)—(lS) allow us to calculate the electromotive
force. The result is given by

E=aB+(U+VN)XB—5(VXB)—kdB (19

&ij(B>=(i/2>f (14 ) " & imeK; + €jmnki)

turbulence scales. Thus, Ed3)—(9) yield k——k in the latter equation we obtainik(,+V{?/
N o < 2)fam(—k,R)=0. The sum of these equations yields
fla=fom +ir(k-B)®, (1D ik, fO=vRtMN/2  Similarly, for an incompressible flow

_ we getkMf, =0 and it yieldsik,fD = —VRtMN/2 These
h{a=h{ —ir(k-B)®, (12 equations allow us to calculate the velocity(B)
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= 6158 /2= — (L2)V{O [ 7(1+¢) MR~ h{D)dk. Us-
ing Eg. (A3) we obtain the velocity U (B)=UP™

+0PPM | where

uPM(B) = —(1/2>VER)f (1+29) MY dk. (1)

0FM(B)= (1/2)V§F)f 7(1+2¢) *hV dk. (22

The vectotU(PM)(B) describes the turbulent diamagnetic ve-

locity (see, e.g., Refd3,4]), whereas the vectdd"™)(B)
determines the turbulent paramagnetic velof2®] (for iso-
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where
X (K)=(q—1)(k/ko) ~Ix§(R)/ko

is the spectrum density of the hydrodynamic helicityk)
=274(k/ko)1 ™9 is the momentum relaxation time. We used
here the fact that the hydrodynamic helicity in the limit of
very small kinematic viscosity is conserved. We also as-
sumed for simplicity thaw (k) = ao(k) vmn(R). The inte-
gration over the wave numbkiin Eq.(23) can be performed
analytically forq=2(1—n"1), wheren is the integer num-
ber, andn>2 orn=<-—2. In particular,n=6 corresponds to
the Kolmogorov spectrumq=5/3, n=4 vyields the
Kraichnan-lroshnikov spectrung=3/2, and n=-2 de-

tropic turbulence the turbulent paramagnetic velocity was inscribes the Batchelor model of turbulence withk 3. Here

troduced in Ref[21]).

IV. NONLINEAR TURBULENT TRANSPORT
COEFFICIENTS

In this section we calculate the nonlinear turbulent trans-
port coefficients, i.e., the hydrodynamic and magnetic parts
of the a effect, the turbulent diamagnetic and paramagneti%ned in

velocities, and the turbulent magnetic diffusion for an aniso
tropic turbulence.

A. The hydrodynamic part of the a effect

e.g., we present results for the Kolmogorov spectrum. The
dependence of the hydrodynamic part of theffect on the
mean magnetic field is determined by

altl(B)=all(0)W 4( ) — 8mnal2(0) Bps¥6(B), (25)

m(0)=F,(B=0) and the function® ,(3) are de-
Appendix B. In the case of small mean magnetic
fields (3<1) the result is given bya{")(B)=a{’)(0)(1
—43%/5)— (2/5)8mne(2(0)ByBs. For isotropic turbulence
[a)(0)= 8mnal)] and B<1 the hydrodynamic part of the
a effect is given bya(V)(B)=al)6,,,(1—68%/5). Equa-

whereF

We find the dependence of the hydrodynamic part of thg;y, (25) for B>1 reads aET‘]’,)](B)=(37T/lO,8)[a§]‘{%(O)

« effect on mean magnetic field, i.e., we calculate

(v)Ok)
gy [ SmnlOK)
ai(B) f1+¢//(B,k)dk (23
(see Sec. I, where hereafter F,,(0k)=F,(B

=0k), al(0k)=(i/2)7(&imKj+ &jmnki) f'o . The tensor
a{?)(0k) can be presented in the form

al(0k)=3al ) (K)Kmnnt (3/2)[ v (K Kpn+ 20 p(K) Kpml,
(24)

where o) =a(")/3, the anisotropic part of the hydrody-
namic « tensorvy,= a'’)— a{”) 8., has the propertiesy,,
= vm and v,,=0. In Eq.(24) we assumed that§’ (k) and

vmn(K) are independent of the direction of the wave vector.

To integrate over the angles in E@3) we use an identity:

J

Whereﬂpszﬁpﬂslﬂza Bn=4Bn/(Ugy2uop) and

arctari\/a) - 1]
—& Y
]

KmnnSing

—— X dfdep=A6,,T A ,
1+acos ¢ 19mn 2Bmn

2

(a+1)

arctari\/a) -
Ja

The functiona” (k) is determined by

2
A,=— ?{(a-l- 3)

al (k)= (k) ) (k)/127k?,

— 8mna2(0)Bps]. In the case ofg>1 and isotropic turbu-

lence the result is given bw()(B)=(2/8%)a{) 8yn. The
latter equation is in agreement with that obtained in Ref.
[12].

B. The magnetic part of the a effect

Now we find the dependence of the magnetic part ofathe
effect on mean magnetic field, i.e., we calculate
(h)
a;i’(B,k)
aff’(B)= f :

1+ z/;(B,k)dk

(26)

(see Sec. lll, where the tensoa"(B,k) = — (i/2) 7(&mnk;

+ejmnk)h(3) is given by aji(jh)(B,k)=3agh)(B)kij5(k
—ko)/4mk® (see Ref.[11]), and a{"(B)=2xM(B)/
(97710p), X™(B) is the magnetic helicity. Note that the
realizability condition (see, e.g., Refs[1,4]) results in
o’ (B,k)=3(k—ko) (see Ref[11]). The integration in Eq.
(26) yields

a(B)=af(B){®(B) B
+(1/2)[3-(1+ )P (B)IP; (B},  (27)

where® (B) = (3/8%)[ 1—arctan)/]. Note that for the tur-
bulent mean-field dynamo the functiorg(jh)(B)Bj only is
important, i.e.,ai(jh)(B)Bj=a§)h)(B)<D(B)Bi. Therefore we
can drop the termxP;;(3) in Eqg. (27) and rewrite it as
follows: a’(B) = af(B)®(B) §; . The latter equation is in
agreement with that derived in Réfl2]. This equation for
B<1 readsa(’(B)=af”(B)(1-35%5)5;, and for>1
it is given by a{’(B) = " (B)(37/2?) ; .
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C. The turbulent diamagnetic velocity U(PM)(B): (1/2){V[W 4( \/5/3) W(Th)]+ ﬂgrh)[q'e( JE,B)/BZ]
Now we find the dependence of the turbulent diamagnetic

2 (v) (h)
velocity UPM)(B) on the mean magnetic field using Eq. X (B-V)B}+(1/6BI)[Ve(B) (577 +377")

(21). The result is given by — 2w \/EB)(W(TU)— n(Th))]VBz’
DM _ v v
UPY(B)=— (12{V,AW(V28)+[y)(y28)/B?] 7" =14h3/3, andh, is the characteristic value of magnetic
X(B-V)B}, (28) fluctua’Fions with zero mean field. In the cgse@%l and

isotropic background turbulence the result is given by

where the functions\{{’(8) and y*)(B) are determined by oy 1 " 8 7"

Egs. (A11) and (A12), respectively. In Eq(28) we drop U )(B)=§ Vi 7y (1—5,3 +tg 5 —(B:V)B

terms«B since they do not contribute to the electromotive Uotop

force. For isotropic background turbulence the dependence
of the turbulent diamagnetic velocity on the mean magnetic

(n(T”’+777(Th))VBZ] :
field is given by

* 2
15upuop

and in the limit of 3>1 we obtain
UCY(B)=— (12{V[V4(\28) 7]

3m 7\ 7 uopop
+ [V o(V28)/B2](B- V)B}, U (B)= 55 ZS/ZV(T e BVB
2
where7{") = 7,u2/3. In the case oB<1 and isotropic back- LT3 )+ L ) Ve _
ground turbulence the result is given by 4B|5 V2 B2

Therefore, the nonlinear turbulent paramagnetic velocity is
Mgy = }| V[ 77(Tv)< - §182” g(re]t(_armined by both an inhomogeneity of the turbulence and
inhomogeneity of the mean magnetic fi@dThe latter
implies that there are additional terms in the turbulent para-
n(Tv) magnetic velocityx VB? and «(B-V)B. These effects are
+ T 2 (B-V)By, caused by a tangling of a nonuniform mean magnetic field by
Uokop hydrodynamic fluctuations. This increases inhomogeneity of
the mean magnetic field.

and in the limit of 3>1 we obtain:
E. The turbulent magnetic diffusion

37 72\ ugVop The dependence of the turbulent magnetic diffusion on
UM (B)=— 0 23’2V(% + TT(BV)B : mean magnetic field is determined by equation

7;i(B)=P;;(B)Q(B) + Kjj(A) +Djj, (30
Note that in a nonlinear case the turbulent diamagnetic ve- ) N
locity includes terms<(B- V)B and= VB which depend on Where the functionQ(B), Djj, and K;j;(A)=[Kpy(A)
inhomogeneity of the mean magnetic field. These effects are Kij(A)1/2 are given by Eqs(A13), (A17), and (A18),
caused by a tangling of a nonuniform mean magnetic field byeSPectively. _ _ _
hydrodynamic fluctuations. This increases the inhomogene- N the case of isotropic turbulence the turbulent magnetic
ity of the mean magnetic field. diffusion is given by

7 (B)=(1I3){[V 4(B) 8+ Pe(B)P;; 157 +37{M)

_ . . () _ _(h)
Now we find the dependence of the turbulent paramag- 20V 4(N2B) 8+ W (N2B) Py (7t = 7))

netic velocity UPM=0FP"+v(N) on the mean magnetic +Dj; .
field (see Sec. l). The result is given by

D. The turbulent paramagnetic velocity

In the case of3<1 and isotropic background turbulence the
UPY(B) = (12{V AR (V28) + [ ¥"(\28)/B7] result is given by

X(B-V)B}+(1/2B)Q(B)VB?, (29 7 (B)=&;[ 71— (2115 P p?1— (2115 5 B, 8;+ D;; ,

. i of e .
where the functions\{)(8), ¥™(8), andQ(g) are deter- and in the fimit of3>1 we obtain

mined by Eqs(A11), (A12), and(A13), respectively. In Eq. 5 (B)=(/58) 8:T(5—\2) n® + (3+ V2) n™
(29) we drop termsxB since they do not contribute to the 7(B)=(m/58){L(5=V2) nit)+(3+2)ni"]
electromotive force. For isotropic background turbulence the —[(312) )+ (512%?) W(Th)]ﬁij},

dependence of the turbulent paramagnetic velocity on the
mean magnetic field is given by where 7r= 7"+ (5/3)7{" , and »{#) = 5{") + 7 5\ .
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V. DISCUSSION

In this study the nonlinear mean-field dependencies of the USing results presented in Sec. IV we derive equations for
hydrodynamic and magnetic parts of theeffect, turbulent @ Nonlinear axisymmetrier()— dynamo for spherical and
diffusion, turbulent diamagnetic, and paramagnetic velocitie§Ylindrical coordinates. The mean magnetic field can be writ-
for an anisotropic turbulence are found. Now we will apply €N in the formB=B,+B,, whereB,=VXA(tr,0)e, is
the obtained results to magnetic dynamo. We first will dis-the€ Poloidal field andB,=B(t,r,0)e, is the toroidal field.
cuss two types of nonlinearities in magnetic dynamo deter! '€ Nonlinear mean-field equations are given by

B. Nonlinear axisymmetric 2 — dynamo

mined by algebraic and differential equations. Then we will g A A
derive a nonlinear system of equations for axisymmetfic _( ) =(L+N) , (36)
dynamos in both spherical and cylindrical coordinates. Jt\B B

Sphericala{) dynamo may be of relevance in convective wherer,6,¢ are the spherical coordinates, the anglds

zones of the Sun and solar type stars. T dynamo in
cylindrical geometry may be of relevance in galaxies.

A. Dynamic and algebraic nonlinearities

We start with a dynamic nonlinearity. To this purpose, we

derive a differential equation for the magnetic partao&f-

fect for an anisotropic turbulence. The induction equation for =

the magnetic fieldH is given by

IHIgt=V X (VX H— nV X H). (31

The equation for the vector potential? follows from the
induction equatior(31)

aA(t)/at:VxH—WVX(VXA(t))-i-V(ﬁ, (32

whereH=V xXA® AO=A+a andA=(AWY) is the mean
vector potential, andp is an arbitrary scalar function. Now
we multiply Eq.(31) by a and Eq.(32) by h, add them and

measured from the direction of the angular velodityand

o[ A a%(r.e))

N _18(Q,Arsin0)
T a(r,e)

DO A

O,+(5-1)A, al)®i+alld
0 U+ (1~ 1)Aq

and A;==A—1/r?sirf g, U;=—(W-V)rsing, U=W-.e,
—W,;-V, W={5(B)e, Ir?sirt, Wo=rsindW, 53(B8)=
—(513)¥s(B) + (7/6)¥(v2 B), £2(B)=(513)¥(B)
—(23)¥4(V2B),  L1(B)=(513)W4(B) — (213)¥ 4(\2B),
O =V,4(B)—Vs(B)—1, e =esind+e,cosd and the
function ®(B)=(3/8?)[1—arctan@)/8]. Equations (34)
and(35) read

average over the ensemble of turbulent fields. This yields an

equation for the magnetic helicity™ = (a,(x)h,(x)):

axMigt=-2€B)-B—xMIT-V-F, (33

(see Ref.[11]), where £(B)=(uxh) is the electromotive
force, (W/T=27(h-(Vxh)), T~r,Rm is the characteris-
tic time of relaxation of the magnetic helicity, ané,

dah o J
P e _ it 9
St =BT LBM(BA), (37)
(h) —_ o _ \/
where  a . (r,0)=—a, (r,m0) and  M(B,A)

=(1/r?sir? G)[V(rAsin6)]-[V(rBsin6)]. In Egs. (36) and
(37) the coordinate and timet are measured in the unii,
andR%/7r; the all) is measured in the uni, ; the angu-
lar velocity ) is measured in the unit®, ; the vector po-

tential of the poloidal fieldA and the toroidal magnetic field

= vefy( s the flux of the magnetic helicity. In the case of B aré measured in units ®®.R,B, and B, , whereR,

one preferential directiofsay, in the directiore) the effec-
tive velocity V¢ =23v/30+ 7 (e- V)e/10— 7 (ex D)/15, and
Di=a{e; (see Ref[11]). The magnetic part of the tensor
is given by a[)(B)=af ®(B)5; (see Sec. IVB where
alV=2xM(B)/(979ruop). Thus, the differential equation
for af" reads

dald ol .
+—+V. (Ve =— -B.
TtV (V)= - g ——EB) B
(34)

The dynamics of the magnetic part of theeffect depends
on the nonlinear electromotive forag(B) which is deter-
mined by the algebraic equati@h9). Indeed,

£(B)-B=[a{"(B)+al"®(B)5;1B;B;

—[n(VXB)+kdB]-B. (35)

=a,R,/Iny, D=R,Rq is the dynamo numberRg
=Q,R?/9r, R, is the radius of a star, and,
=(puo) Y4 n1/R,). Since we considex) — dynamos the
terms~0O(R,/Ry) are dropped in Eqge36) and (37), and
the componenty,,, of the tensore is only essential.

In cylindrical coordinatesz,R,¢, Egs. (36) and (37)
are valid after the changesinf#—R, and I\7I(B,A)=(1/
RH[V(RA]-[V(RB)], A=A-1/R% QA=(Q,AR)/
d(z,R) and R, is the thickness of a diske =ez and
e,=Q/Q.

Equations(36) and (37) describe a closed nonlinear sys-
tem including the algebraic and dynamic nonlinearities. For
simplicity we assumed that the nonhelical part of turbulence
is isotropic. We also assumed th¥ty=0, i.e., homoge-
neous turbulent diffusion. Note that the case of pure dynamic
nonlinearity was studied analytically in one-mode approxi-
mation for axisymmetrica{)— dynamo in Ref.[10],
whereby a formula for the magnitude of the mean magnetic
field as a function of the angular velocity and parameters for

Therefore, the nonlinearity in turbulent mean-field dynamoa solar-type convective zone was derived. Numerically, the
includes both nonlinearities which are determined by algecase of the pure dynamic nonlinearity was studied in Ref.
braic equation(35) and dynamic equatio(B4). [22]. A complicated dynamics including appearance of a
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chaotic behavior of mean magnetic field was found in Ref(see Ref.[20]), where we used an identity;;,(I=3)=
[22]. Analytical and numerical analysis of Eq86) and(37)  — (47/3)b,j(r=0)6i,, andljjn,(I1<3)=0, wherelj,n(l)

are subjects of future studies. Equati@B6) and(37) can be =[f(ribnj(r)/r')dam]r_>0, and the integration in the latter
generalized to the cases of nonaxisymmew#f)— and integral is performed over the closed surface with an internal

@?Q— dynamos. normal. Now we take into account that
Now we discuss a form of the electromotive force in the (N)_ 1 (ON) 1, £ (ON)_ (0N}
general case. In the isotropic case f8¥1 the functions hom=ham’ +¥(1+2¢) *(fin’ —hpm’)  (A3)

a{")(B) and a"(B) are proportional t8~2 , whereas all .
otyher turbulentj transport coefficients;;(B), U(B) are pro- [see Eqs(12) and(15)]. This yields

portional toB~1. This implies that the growth of the mean biik=eiimKmd )+ A (A4)
magnetic field can be saturated only by algebraic nonlinear- i T mi ke

ity. On the other hand, for anisotropic turbulence all turbu-

lent transport coefficients including the hydrodynamic part of Aijk:(zﬁ)_lskmnf [Snj(r) —snj(r=0)]

the « effect are proportional t@8~* for 8> 1. This implies

that the mean magnetic field cannot be saturated by algebraic X (Spi—3rm)r ~3dr, (A5)
nonlinearity alone. However, a combination of two types of

nonlinearities(algebraic and dynamican result in a satura- si(D=AP(r, B) +NP(r 28 - \P(r,\28), (A6)

tion of the mean magnetic field in an anisotropic case.

Note that in most astrophysical applications the condition cij (k) (k) .
adaM/at=0 is not valid because the relaxation time of the NP(r.B)= f mexpﬂk-r) dk, (A7)
magnetic part of thex effect is very long, i.e..T~ 7y Rm. ’
For instance, this time for galaxies is larger than the lifetime Ny =T @) 2y 9y (0) (h)
of the Universe. This implies that the nonstationary equation Kij (M) =LON7(B) — 2\ (\/E'BH%” (B)
(34) for the magnetic part of the effect should be solved. +2 (28113, (A8)
Note also that there are two different cas@$:with zero )
mean magnetic fieldg=0) and(ii) with a small mean mag- \where Bn=4B1(Ug\2uop), (B, K) =[(B-K)ug/2]?,
netic field. WhenB=0 the magnetic helicitfand the mag- )\i(ja)(lg):)\i(f)(rzoug), Cij:fi(jON) when a=v, and ¢
netic part of thex effect is very smally"eRm™ 31 (see =h{™ whena=h. For the calculation of the tensby;, we

Ref. [23]). On the other hand, even for very small meanp,ye to specify a model of the background turbulefice,
magnetic field the magnetic helicity is not smatlis of the 1 ,ihulence with zero mean magnetic fieltVe use the fol-

order of the hydrodynamic helicity _ lowing model for the background anisotropic incompressible
Thus, in this study a nonlinear electromotive force for any,pulent velocity and magnetic fields:

anisotropic turbulence in the case of intermediate nonlinear-

ity is calculated. The intermediate nonlinearity implies that ~ ()
S 5 2777(k) @
the mean m_agnetlc field is not strpng_enough to affect the 7cij(k) = 2 Pi (k) T_an(k)knm
correlation time of turbulent velocity field. The case of a
strong nonlinearity is a subject of future study. +2[£ij#§1?21(k)knm+ Mi(ja)(k)—ﬂi(ﬁ)(k)kmj
APPENDIX A: DERIVATION OF EQ. (19
FOR THE ELECTROMOTIVE FORCE —Kimu 2l (K) 1|, (A9)
In order to calculate the integral in E¢L8) we use an
identity where the anisotropic part of this tensnlﬁf,"%(k) has the
propertiesug?%(k)=/v¢f1a,])1(k) and,uéap)(k)=0. Inhomogeneity
; f the background turbulence is assumed to be weak, i.e., in
hij (K) kg (K k-r)dk 0 1€
U i (Kkar(k)jexpik-r) L-»o Eq. (A9) we dropped terms~O(V (7% ;u{?)). Here
1 2 n(T”)(hk)=Tf§)%N)(k)= 7e(k), and 7 (k)=7hOV(k)
[ o Cnna Ay =e®, wPR=aP R0, where el
roror =(7,k%ko) “1(k/ko) """ (see Sec. IV A The integration in

(see Ref[20]), whereby;(r) = h;; (k) (K)exp(k-r) dk, and K SPace in Eq(AT7) yields
we took into account that the Fourier transformation yields

ikj—alar;, — ¢pIk2—A~tp=(4m) L[ (H/r)dr. Integra- NP(B)=AP(r=0,8)=AP(B)+ By vD(B), o
tion in parts twice in Eq(Al) yields (A10)
1 2 4 AP(B) =T 1(B) P+ W2 B) (D Baj+ BinnD)
f—Wbij(r)dr:_?bij(rZO)@d
roryon + 5[ PO 4(B) + (L)W 5( B) 2 By,

(A11)

YA(B)=(LI[Vs(B) i Bspt 2¥s(B) 7],
(A2) (A12)

1
- J —bij(r) (8= 3ry) dr
r
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where the functiondV ,(8) are defined in Appendix B. For
B<1 the functiony®(B)=(2/5)7{?B? and the function
A(a)(,B) are given by

4 8
A(a)(,B) 8 (a)( 1— 5182) — ﬁ,uéas)ﬁsﬂp}
22
<a>(1—2—1 (A1 Bo(wDBy+ i),

For 8>1 these functions are given by

A(B)=(m1168) (21 + 6(u(3) By Bioisl)
+8,[(24/5) 7~ 53 B, 11,

Y@(B) = (3m/108)[ 7+ (5/8) Y Bsp].-

For an isotropic turbulencey®(B)=¥4(B)7{? and
A(a)(,B) 5,J\If4(,8) 7. Now we calculatefi(1)=bi(j1k)Bjk.
Wherebljk Slmjﬂka(:B) and

QB =[57"(B)— 2y (V28)+3+M(B)
+2yM(\28)1/3.

For B<1 the functionQ(B) is given by Q(B)=(28%/
15)(7{")+ 7 5{M), and for>1 the functionQ(B) is given
by

(A13)

)

23/2,8

2
R

Qp)= g g B V20l +5u() |.

(Al14)

For an isotropic turbulenceQ(B)=(1/3)[¥4(B) (57"
+37M) —2W4(V28) (7 — 7{)]. Now we use an iden-
tity 8|mn:8np mp [BXV(lez)] /B?— |p(:8)(VXB)py
where P;;(8)=8;— Bi; . This y|elds£€(1)—[V(N)(B)><B],
—7{(VxB);, where the velocity V®N(B)=(1/
2)Q(B)(V BZ)/B2 describes an additional contribution to the
nonlinear turbulent paramagnetic velocity, ~ang”
=P;;(B)Q(B) determines an additional contribution to the
nonlinear turbulent diffusion. The total electromotive force is
given by £=EW+£®, where £7=4;;B;+b{})B;, and
b{?=eijmKmd(A)+Ajjx. Now we use an identityB;

=(9B)jk—ej(VXB),/2 (see Ref.[24]), where @B)j

EQ=aB+UxB-7?(VXB)—kdB  (Al5)

where a;;(B)=(ajj+a;)/2, Uw(B)=ey;a;/2, kijk(B)
=~ (bl +bid) 2,

10= (bt 2 jiphip)/4=Kij(A)+Djj, (A16)

Dij = (eikpAjkp T €jkpAikp)/ 4 (AL17)

andK;;(A) =[K,p(A) & —K;;(A)1/2, and

ELECTROMOTIVE FORCE FOR AN ANISOTRORI. . .
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Kij(M)=[5A(B)~2A(\28) +3A{(B)
+2A N (\2p)113. (A18)
For g<1 the functionK;;(A) is given by
Kij(A)=1;;(B=0) + (4/7) Bn( Bjin+ Bittnj)
2
i 55.,n(ﬁ)+§—iﬂ«(m+281 8 Bephs |
(A19)
where 7;(B=0)= 8 nr+ i, nr=n+ (537", wy
= i)+ (53l AP =BT and =)
+7,u.”h For 8>1 the functionK;;(A) is given by

Kij(A) = o= [ (5= V2)AP(B)+(3+V2)AP(B)].

48,8
For an isotropic turbulence
Kij(A)= (8 /3)[ W o(B) (57t +37t)
—2W,(V2B) (7= 9],
Therefore the total electromotive force is given by Ep).

APPENDIX B

The functions¥(B) are given by

5| arctan3| 1 6 1 92
Vi(B)=7 5 5_7_,32+9_/34 + 315
, 169 _il
18982 9p%]
_ 5] arctang 3 6 5 64
Wa(B)= 7 5 |5 7_,82_9_ﬂ4 ~315-(B)
197 5
J— +_ ,
18982 9B4l
B 5| arctanB 18 16
B 451 _i
18982 9p*

_ 3 |arctang 5 5
Wa(B)= 3¢ B 7‘; +3|—(,3)+E :
_ 25| arctang 6 7 16
Vs(B)=74 T 25" 782 9,3 " 1575-(A)
_ s 7
18982 9p*
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3

arcta
V()= | ®

B

where L(B)=1-28%+2B%In(1+B7?). In the case ofp
<1 these functions are given by

Vi(B)~1- (221208  V,(B)~(4I7) B2,
Wy(B)~—(32/21 87,

(7+ E’) —2L(,8)—£)
B B
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W4(B)~1—(415)8% Ws(B)~—(16/638*InB,

We(B)~(2/5)B%
In the case of3>1 these functions are given by

Vi(B)~7l8B, Wo(B)~3m/8B, Wi(B)~—57/4pB,

V,(B)~3m108, Vs(B)~3m/8B, WuB)~3m/108.
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