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Electromotive force for an anisotropic turbulence: Intermediate nonlinearity

Igor Rogachevskii and Nathan Kleeorin
Department of Mechanical Engineering, The Ben Gurion University of the Negev, 84105 Beer-Sheva, Israel

~Received 19 May 1999; revised manuscript received 3 January 2000!

A nonlinear electromotive force for an anisotropic turbulence in the case of intermediate nonlinearity is
derived. The intermediate nonlinearity implies that the mean magnetic field is not strong enough to affect the
correlation time of a turbulent velocity field. The nonlinear mean-field dependencies of the hydrodynamic and
magnetic parts of thea effect, turbulent diffusion, and turbulent diamagnetic and paramagnetic velocities for
an anisotropic turbulence are found. It is shown that the nonlinear turbulent diamagnetic and paramagnetic
velocities are determined by both an inhomogeneity of the turbulence and an inhomogeneity of the mean
magnetic fieldB. The latter implies that there are additional terms in the turbulent diamagnetic and paramag-
netic velocities}“B2 and}(B•“)B. These effects are caused by a tangling of a nonuniform mean magnetic
field by hydrodynamic fluctuations. This increases the inhomogeneity of the mean magnetic field. It is also
shown that in an isotropic turbulence the mean magnetic field causes an anisotropy of the nonlinear turbulent
diffusion. Two types of nonlinearities in magnetic dynamo determined by algebraic and differential equations
are discussed. Nonlinear systems of equations for axisymmetricaV dynamos in both spherical and cylindrical
coordinates are derived.

PACS number~s!: 47.65.1a
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I. INTRODUCTION

Turbulent motions of a conducting fluid can genera
large-scale~mean! magnetic field and small-scale magne
fluctuations. Many dynamo models~see, e.g., Refs.@1–5#!
are kinematic~i.e., they predict a magnetic field that grow
without limit!. In order to find, e.g., the magnitude of th
magnetic field, the nonlinear effects which limit the fie
growth must be taken into account. The nonlinearities in t
bulent mean-field dynamo imply an effect of a mean m
netic field on thea effect, turbulent magnetic diffusion, tur
bulent diamagnetic velocity, etc. The mean magnetic fieldB
is determined by an induction equation

]B/]t5“3@V3B1E#1hDB ~1!

~see, e.g., Refs.@1–5#! whereV is a mean velocity~e.g., the
differential rotation!, h is the magnetic diffusion due to th
electrical conductivity of fluid,E5^u3h& is the turbulent
electromotive force,u andh are fluctuations of the velocity
and magnetic field, respectively, angular brackets denote
eraging over an ensemble of turbulent fluctuations. The
bulent electromotive force in kinematic dynamo for an is
tropic turbulence is given by

E5a0
(v)B1U03B2hT“3B ~2!

~see Ref.@3#!, wherea0
(v)52(1/3)^tu•(“3u)& is the hy-

drodynamic part of thea effect, U052(1/2)“^tu2& is the
turbulent diamagnetic velocity,hT5(1/3)^tu2& is the turbu-
lent magnetic diffusion, andt is the correlation time of the
turbulent velocity field.

In the nonlinear stage of evolution of the mean magne
field, the a effect, turbulent diffusion and turbulen
diamagnetic velocity depend on the mean magnetic fieldB.
The totala effect in nonlinear dynamo is split into hydro
dynamic a (v) and magnetica (h) parts, wherea (h)5(t/
PRE 611063-651X/2000/61~5!/5202~9!/$15.00
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3m0r)^th•(“3h)& and m0 is the magnetic permeability o
the fluid ~see Refs.@6–8#!. Such splitting of thea effect is
introduced in nonlinear dynamo because the growing m
netic field reacts differently on the hydrodynamic and t
magnetic parts of thea effect ~see Refs.@9–11#!. The back
reaction of the mean magnetic field on the hydrodynam
part of thea effect is almost instantaneous~of the order of a
characteristic correlation time of the turbulence,t05 l 0 /u0,
whereu0 is the characteristic turbulent velocity in the max
mum scale of turbulent motionsl 0). However, the character
istic timeth of the back action of the mean magnetic field
the magnetic part of thea effect is much larger thant0 for
large magnetic Reynolds numbers. Recent calculations
formed in Ref. @12# for isotropic turbulence demonstrate
that the total~hydrodynamic plus magnetic! a effect is non-
linearized in the form of a quenching, i.e., by replacinga

with aF̃(B), where F̃(B) is a decreasing function of th
mean magnetic field. Note, however, that in real astroph
cal applications the turbulence is anisotropic. Sinceth@t0,
the back reaction of the magnetic field on the magnetic p
of the a effect cannot, in general, be reduced to a sim
quenching but must be described by an evolutionary diff
ential equation~see Refs.@9–11#!. Thus there are two main
types of the nonlinearities for thea effect: a quenching of
the totala effect in the form of an algebraic equation~see
Ref. @12#! and a nonlinear evolution of the magnetic part
the a effect which is determined by a differential equatio
~see Refs.@9–11#!. In spite of the fact the nonlineara effect
is well studied for isotropic turbulence, effects of the me
magnetic field on the turbulent diffusion and turbulent d
magnetic velocity is still poorly understood.

In the present paper a nonlinear electromotive force for
anisotropic turbulence in the case of intermediate nonline
ity is calculated, i.e., the nonlinear mean-field dependen
of the hydrodynamic and magnetic parts of thea effect,
turbulent diffusion, turbulent diamagnetic, and paramagn
5202 ©2000 The American Physical Society
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velocities for an anisotropic turbulence are found. The int
mediate nonlinearity implies that the mean magnetic field
not strong enough to affect the correlation time of the tur
lent velocity field. In the case of isotropic turbulence t
obtained results for thea effect are in agreement with thos
obtained in Ref.@12#. We demonstrated that the nonline
turbulent diamagnetic and paramagnetic velocities are de
mined by both an inhomogeneity of the turbulence and
inhomogeneity of the mean magnetic fieldB. The latter im-
plies that there are additional terms in the turbulent diam
netic and paramagnetic velocities}“B2 and }(B•“)B.
These effects are caused by a tangling of a nonuniform m
magnetic field by hydrodynamic fluctuations.

II. GOVERNING EQUATIONS

In this section we derive an equation for the nonline
turbulent electromotive force for large hydrodynamic (R
5 l 0u0 /n@1) and magnetic (Rm5 l 0u0 /h@1) Reynolds
numbers, wheren is the kinematic viscosity. We will use
mean field approach in which the magnetic,H, and velocity,
v, fields are divided into the mean and fluctuating parts:H
5B1h, v5V1u, where the fluctuating parts have ze
mean values,V5^v&5const, andB5^H&. The momentum
equation and the induction equation for the turbulent fieldu
andh in a frame moving with a local velocity of the large
scale flowsV are given by

]u/]t52“P8/r2@h3~“3B!1B3~“3h!#/~m0r!1T

1nDu1Fr /r, ~3!

]h/]t5“3~u3B2h“3h!1G, ~4!

and“•u50, whereP8 are the fluctuations of the hydrody
namic pressure,Fr is a random external stirring force,r is
the density of fluid, the nonlinear terms (T andG) are given
by T5^(u•“)u&2(u•“)u1@^h3(“3h)&2h3(“3h)#/
(m0r), and G5“3(u3h2^u3h&). The fluctuations are
concentrated in small scales. Therefore the derivatives of
large-scale fields are small in comparison with the deri
tives of the turbulent fields. Now let us derive equations
the second moments. For this purpose we rewrite Eqs.~3!
and ~4! in a Fourier space and repeat twice the vector m
tiplication of Eq. ~3! by the wave vectork. The result is
given by

dum~k,t !/dt5@2Pmi~k!2dmi#Ŝi
(c)~h;B!/~m0r!

1Ŝm
(b)~h;B!/~m0r!2T̃m2nk2um , ~5!

dhn~k,t !/dt5Ŝn
(b)~u;B!2Ŝn

(c)~u;B!1Gn2hk2hn , ~6!

where Ŝn
(c)(a;A)5 i *aj (k2Q)QjAn(Q)d3Q, Ŝn

(b)(a;A)

5 ik j*an(k2Q)Aj (Q)d3Q, T̃5k3(k3T)/k2, Pi j (k)5d i j

2ki j , dmn is the Kronecker tensor andki j 5kikj /k2. We use
the two-scale approach, i.e., a correlation function
r-
s
-

r-
n

-

an

r

he
-
r

l-

^ui~x!uj~y!&5E ^ui~k1!uj~k2!&

3exp$ i ~k1•x1k2•y!%d3k1 d3k2

5E f i j ~k,R!exp~ ik•r !d3k,

f i j ~k,R!5E ^ui~k1K /2!uj~2k1K /2!&exp~ iK•R!d3K,

whereR5(x1y)/2, r5x2y, K5k11k2 , k5(k12k2)/2,
R andK correspond to the large scales, andr andk to the
small ones~see, e.g., Refs.@13,14#!. The others second mo
ments have the same form, e.g.,

hi j ~k,R!5E ^hi~k1K /2!hj~2k1K /2!&

3exp~ iK•R!d3K/m0r,

k i j ~k,R!5E ^hi~k1K /2!uj~2k1K /2!&exp~ iK•R!d3K.

Note that the two-scale approach is valid wh
(1/B)(dB/dR)! l 0

21, where B5uBu. Now we derive the
equations for the correlation functionsf nm(k,R), hnm(k,R),
andknm(k,R)

] f nm /]t5 i ~k•B!Fnm1Mnm1Fnm22nk2f nm , ~7!

]hnm /]t52 i ~k•B!Fnm1Rnm22hk2hnm , ~8!

]knm /]t5I nm1Cnm2~n1h!k2knm , ~9!

I nm5 i ~k•B!~ f nm2hnm!1~1/2!~B•“ (R)!~ f nm1hnm!

2 f jmBn j1hn j~2Pmi~k!2dmi!Bi j , ~10!

where

Fnm~k,R!5^F̃n~k,R!um~2k,R!&1^un~k,R!F̃m~2k,R!&,

Fnm~k,R!5@knm~k,R!2kmn~2k,R!#/m0r,

F̃~k,R,t !5k3@k3Fr~k,R!#/k2r,

and Bi j 5]Bi /]Rj . The third moment is given by
Mnm(k,R,t)5^T̃n(k)um(2k)&1^un(k)T̃m(2k,t)&. The ex-
pressions for the remaining momentsRnm andCnm are simi-
lar. In Eqs. ~7! and ~8! we neglected the terms}(B
•“

(R))knm and }Bn jk jm because they contribute to th
modification of the Ampe`re force caused by the turbulenc
effect ~see, e.g., Refs.@18,19#!, where“ (R)5]/]R. In Eq.
~9! we neglected the second and higher derivatives oveR
and terms which are of the order of Rm21

“

(R)(Bi , f nm ,hnm)
and Re21

“

(R)(Bi ; f nm ;hnm).
Now we split all correlation functions ~i.e.,

f nm ,hnm ,knm ,Fnm) into two parts, e.g.,f nm5 f nm
(N)1 f nm

(S) ,
where f nm

(N)5@ f nm(k,R)1 f nm(2k,R)#/2 and f nm
(S)

5@ f nm(k,R)2 f nm(2k,R)#/2. The tensorf nm
(S) describes the

helical part of the tensor, whereasf nm
(N) describes the nonhe

lical part of the tensor. Such splitting is caused, e.g.,
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different times of evolution of the helical and nonhelic
parts of the magnetic tensor. In particular, the character
time of evolution of the tensorhnm

(N) is of the ordert0 while
the relaxation time of the componenthnm

(S) is of the order of
t0 Rm ~see, e.g., Ref.@11#!. By means of Eqs.~7!–~9! we
derive equations for the helical and nonhelical parts of th
tensors. We assume also that the magnetic tensorhnm

(S) is a
given and is determined by some evolutionary equation~see
Sec. V and Refs.@10,11#!.

III. ELECTROMOTIVE FORCE

Equations~7!–~9! describe an evolution of the secon
moments. Equations of this type raise, as usual, a questio
closing the equations for the higher moments. Various
proximate methods have been proposed for the solution
problems of this type~see, e.g., Refs.@15–17#!. The simplest
closure procedure is thet approximation, which is widely
used in the theory of kinetic equations. For magnetohyd
dynamic turbulence this approximation was used in Ref.@7#
~see also Refs.@18,19#!. In the simplest variant, it allows u
to express the third moments in terms of the second
ments:

Mnm2Mnm
(0)52

f nm2 f nm
(0)

t~k!
, Rnm

(N)2Rnm
(0)52

hnm
(N)2hnm

(0)

t~k!
,

Cnm2Cnm
(0)52

knm2knm
(0)

t~k!
.

The superscript (0) corresponds here to the backgro
magnetohydrodynamic turbulence~it is a turbulence withB
50), and t(k) is the characteristic relaxation time of th
statistical moments.

The t approximation is in general similar to the edd
damped quasinormal Markowian~EDQNM! approximation.
However, some principal difference exists between these
approaches~see Refs.@15,17#!. The EDQNM closures do no
relax to equilibrium, and this procedure does not descr
properly the motions in the equilibrium state in contrast
thet approximation. Within the EDQNM theory, there is n
dynamically determined relaxation time, and no slightly p
turbed steady state can be approached@15#. In thet approxi-
mation, the relaxation time for small departures from eq
librium is determined by the random motions in th
equilibrium state, but not by the departure from equilibriu
@15#. We use thet approximation, but not the EDQNM
approximation because we consider a case w
l 0u“ (R)B2u/m0!^ru2&. As follows from the analysis by Ref
@15# the t approximation describes the relaxation to equil
rium state ~the background turbulence! much more accu-
rately than the EDQNM approach.

Now we assume thatnk2!hk2!t21 for the inertial
range of turbulent fluid flow. We also assume that the ch
acteristic time of variation of the mean magnetic fieldB is
substantially longer than the correlation timet(k) for all
turbulence scales. Thus, Eqs.~7!–~9! yield

f nm
(N)5 f nm

(0N)1 i t~k•B!Fnm
(S) , ~11!

hnm
(N)5hnm

(0N)2 i t~k•B!Fnm
(S) , ~12!
ic

e
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of

-

o-

d

o

e

-

i-

h

-
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f nm
(S)5 f nm

(0S)1 i t~k•B!Fnm
(N) , ~13!

Fnm
(N)5t~11c!21~m0r!21$2i ~k•B!~ f nm

(0S)2hnm
(S)!

1Bm j~ f jn
(0N)1hjn

(0N)!2Bn j~ f jm
(0N)1hjm

(0N)!

12Bp j~hm j
(N)kpn2hn j

(N)kpm!%, ~14!

Fnm
(S)52i t~112c!21~m0r!21~k•B!~ f nm

(0N)2hnm
(0N)!

1O~Bnm!, ~15!

wherec52(k•Bt)2/m0r, ki j 5kikj /k2, f i j
(0N) and f i j

(0S) de-
scribe the nonhelical and helical tensors of the backgro
turbulence, and we took into account thatk i j (B50)50.

Using Eqs.~11!–~15! we calculate the electromotive forc
Ei(r50)5*Ei(k)dk, where the Fourier componentEi(k)
5(m0r/2)« imnFnm

(N)(k), and « i jk is the Levi-Civita tensor.
The electromotive force is given by

Ei~r50!5ai j Bj1bi jkBjk , ~16!

where

ai j 5 i E t~11c!21« imnkj~ f nm
(0S)2hnm

(S)!dk, ~17!

bi jk5E t~11c!21@« i jn~ f kn
(0N)1hkn

(0N)!22« imnkm jhnk
(N)#dk.

~18!

Equations~16!–~18! allow us to calculate the electromotiv
force. The result is given by

E5âB1~U1V(N)!3B2ĥ~“3B!2k̂­B̂ ~19!

~see Appendix A!, where â i j (B)5(ai j 1aji )/2, Uk(B)
5«k j iai j /2, V(N)(B)5(1/2B2)Q(b)“B2, k̂ i jk(B)5
2(bi jk

(2)1bik j
(2))/2, bi jk

(2)5« i jmKmk(L)1Ai jk , the turbulent

magnetic diffusion is ĥ(B)5ĥ(1)1ĥ(2), ĥ i j
(1)

5Pi j (b)Q(b), ĥ i j
(2)5K̂ i j (L)1(« ikpAjkp1« jkpAikp)/4,

K̂ i j (L)5„Kpp(L)d i j 2Ki j (L)…/2, b54B/(u0A2m0r), b
5ubu, the tensorAi jk is determined by Eq.~A5!, the func-
tions Ki j (L) and Q(b) are determined by Eqs.~A13! and
~A18!, respectively~see Appendix A!. The tensorâ i j (B) is
given by

â i j ~B!5~ i /2!E t~11c!21~« imnkj1« jmnki !

3~ f nm
(0S)2hnm

(S)!dk. ~20!

Now we calculate the velocityU(B). The condition“•u
50 implies that k(2)

•u(k(2))50, i.e., km
(2)f nm50. This

yields (2 ikm1¹m
(R)/2) f nm(k,R)50. Using the change

k→2k in the latter equation we obtain (ikm1¹m
(R)/

2) f nm(2k,R)50. The sum of these equations yield
ikmf nm

(S)5¹m
(R) f nm

(N)/2. Similarly, for an incompressible flow
we getkn

(1)f nm50 and it yieldsiknf nm
(S)52¹n

(R) f nm
(N)/2. These

equations allow us to calculate the velocityUk(B)
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5«k j iai j /252(1/2)¹p
(R)*t(11c)21( f pk

(0N)2hpk
(N))dk. Us-

ing Eq. ~A3! we obtain the velocity Uk(B)5Uk
(DM )

1Ũk
(PM) , where

Uk
(DM )~B!52~1/2!¹p

(R)E t~112c!21f pk
(0N) dk. ~21!

Ũk
(PM)~B!5~1/2!¹p

(R)E t~112c!21hpk
(0N) dk. ~22!

The vectorU(DM )(B) describes the turbulent diamagnetic v
locity ~see, e.g., Refs.@3,4#!, whereas the vectorŨ(PM)(B)
determines the turbulent paramagnetic velocity@20# ~for iso-
tropic turbulence the turbulent paramagnetic velocity was
troduced in Ref.@21#!.

IV. NONLINEAR TURBULENT TRANSPORT
COEFFICIENTS

In this section we calculate the nonlinear turbulent tra
port coefficients, i.e., the hydrodynamic and magnetic p
of the a effect, the turbulent diamagnetic and paramagne
velocities, and the turbulent magnetic diffusion for an ani
tropic turbulence.

A. The hydrodynamic part of the a effect

We find the dependence of the hydrodynamic part of
a effect on mean magnetic field, i.e., we calculate

amn
(v)~B!5E amn

(v)~0,k!

11c~B,k!
dk ~23!

~see Sec. III!, where hereafter Fmn(0,k)[Fmn(B
50,k), a i j

(v)(0,k)5( i /2)t(« imnkj1« jmnki) f nm
(0S) . The tensor

amn
(v)(0,k) can be presented in the form

amn
(v)~0,k!53a0

(v)~k!kmn1~3/2!@nmp~k!kpn1nnp~k!kpm#,
~24!

where a0
(v)5app

(v)/3, the anisotropic part of the hydrody
namic a tensornmn5amn

(v)2a0
(v)dmn has the propertiesnmn

5nnm andnpp50. In Eq.~24! we assumed thata0
(v)(k) and

nmn(k) are independent of the direction of the wave vect
To integrate over the angles in Eq.~23! we use an identity:

E kmn sinu

11a cos2u
du dw5A1dmn1A2bmn ,

wherebps5bpbs /b2, bn54Bn /(u0A2m0r) and

A15
2p

a F ~a11!
arctan~Aa!

Aa
21G ,

A252
2p

a F ~a13!
arctan~Aa!

Aa
23G .

The functiona0
(v)(k) is determined by

a0
(v)~k!5t~k!x (v)~k!/12pk2,
-

-
ts
ic
-

e

.

where

x (v)~k!5~q21!~k/k0!2qx0
(v)~R!/k0

is the spectrum density of the hydrodynamic helicity,t(k)
52t0(k/k0)12q is the momentum relaxation time. We use
here the fact that the hydrodynamic helicity in the limit
very small kinematic viscosity is conserved. We also
sumed for simplicity thatnmn(k)5a0(k)nmn(R). The inte-
gration over the wave numberk in Eq. ~23! can be performed
analytically forq52(12n21), wheren is the integer num-
ber, andn.2 or n<22. In particular,n56 corresponds to
the Kolmogorov spectrumq55/3, n54 yields the
Kraichnan-Iroshnikov spectrumq53/2, and n522 de-
scribes the Batchelor model of turbulence withq53. Here,
e.g., we present results for the Kolmogorov spectrum. T
dependence of the hydrodynamic part of thea effect on the
mean magnetic field is determined by

amn
(v)~B!5amn

(v)~0!C4~b!2dmnaps
(v)~0!bpsC6~b!, ~25!

whereF̃mn(0)[F̃mn(B50) and the functionsCn(b) are de-
fined in Appendix B. In the case of small mean magne
fields (b!1) the result is given byamn

(v)(B)5amn
(v)(0)(1

24b2/5)2(2/5)dmnaps
(v)(0)bpbs . For isotropic turbulence

@amn
(v)(0)5dmna0

(v)# andb!1 the hydrodynamic part of the
a effect is given byamn

(v)(B)5a0
(v)dmn(126b2/5). Equa-

tion ~25! for b@1 reads amn
(v)(B)5(3p/10b)@amn

(v)(0)
2dmnaps

(v)(0)bps#. In the case ofb@1 and isotropic turbu-
lence the result is given byamn

(v)(B)5(2/b2)a0
(v)dmn . The

latter equation is in agreement with that obtained in R
@12#.

B. The magnetic part of thea effect

Now we find the dependence of the magnetic part of tha
effect on mean magnetic field, i.e., we calculate

a i j
(h)~B!5E a i j

(h)~B,k!

11c~B,k!
dk ~26!

~see Sec. III!, where the tensora i j
(h)(B,k)52( i /2)t(« imnkj

1« jmnki)hnm
(S) is given by a i j

(h)(B,k)53a0
(h)(B)ki j d(k

2k0)/4pk2 ~see Ref. @11#!, and a0
(h)(B)52x (h)(B)/

(9hTm0r), x (h)(B) is the magnetic helicity. Note that th
realizability condition ~see, e.g., Refs.@1,4#! results in
a i j

(h)(B,k)}d(k2k0) ~see Ref.@11#!. The integration in Eq.
~26! yields

a i j
(h)~B!5a0

(h)~B!$F~b!b i j

1~1/2!@32~11b2!F~b!#Pi j ~b!%, ~27!

whereF(b)5(3/b2)@12arctan(b)/b#. Note that for the tur-
bulent mean-field dynamo the functiona i j

(h)(B)Bj only is
important, i.e.,a i j

(h)(B)Bj5a0
(h)(B)F(b)Bi . Therefore we

can drop the term}Pi j (b) in Eq. ~27! and rewrite it as
follows: a i j

(h)(B)5a0
(h)(B)F(b)d i j . The latter equation is in

agreement with that derived in Ref.@12#. This equation for
b!1 readsa i j

(h)(B)5a0
(h)(B)(123b2/5)d i j , and forb@1

it is given bya i j
(h)(B)5a0

(h)(B)(3p/2b2)d i j .
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C. The turbulent diamagnetic velocity

Now we find the dependence of the turbulent diamagn
velocity U(DM )(B) on the mean magnetic field using E
~21!. The result is given by

Ui
(DM )~B!52~1/2!$¹pLpi

(v)~A2b!1@g (v)~A2b!/B2#

3~B•“ !Bi%, ~28!

where the functionsL i j
(v)(b) andg (v)(b) are determined by

Eqs. ~A11! and ~A12!, respectively. In Eq.~28! we drop
terms}B since they do not contribute to the electromoti
force. For isotropic background turbulence the depende
of the turbulent diamagnetic velocity on the mean magn
field is given by

U(DM )~B!52~1/2!$“@C4~A2b!hT
(v)#

1hT
(v)@C6~A2b!/B2#~B•“ !B%,

wherehT
(v)5t0u0

2/3. In the case ofb!1 and isotropic back-
ground turbulence the result is given by

U(DM )~B!52
1

2 H“FhT
(v)S 12

8

5
b2D G

1
32

5

hT
(v)

u0
2m0r

~B•“ !BJ ,

and in the limit ofb@1 we obtain:

U(DM )~B!52
3p

80F23/2
“S hT

(v)

b D 1
hT

(v)u0Am0r

B3
~B•“ !BG .

Note that in a nonlinear case the turbulent diamagnetic
locity includes terms}(B•“)B and}“B which depend on
inhomogeneity of the mean magnetic field. These effects
caused by a tangling of a nonuniform mean magnetic field
hydrodynamic fluctuations. This increases the inhomoge
ity of the mean magnetic field.

D. The turbulent paramagnetic velocity

Now we find the dependence of the turbulent param
netic velocity U(PM)5Ũ(PM)1V(N) on the mean magneti
field ~see Sec. III!. The result is given by

Ui
(PM)~B!5~1/2!$¹pLpi

(h)~A2b!1@g (h)~A2b!/B2#

3~B•“ !Bi%1~1/2B2!Q~b!¹ iB
2, ~29!

where the functionsL i j
(h)(b), g (h)(b), andQ(b) are deter-

mined by Eqs.~A11!, ~A12!, and~A13!, respectively. In Eq.
~29! we drop terms}B since they do not contribute to th
electromotive force. For isotropic background turbulence
dependence of the turbulent paramagnetic velocity on
mean magnetic field is given by
ic

ce
ic

e-

re
y
e-

-

e
e

U(PM)~B!5~1/2!$“@C4~A2b!hT
(h)#1hT

(h)@C6~A2b!/B2#

3~B•“ !B%1~1/6B2!@C6~b!~5hT
(v)13hT

(h)!

22C6~A2b!~hT
(v)2hT

(h)!#“B2,

hT
(h)5t0h0

2/3, andh0 is the characteristic value of magnet
fluctuations with zero mean field. In the case ofb!1 and
isotropic background turbulence the result is given by

U(PM)~B!5
1

2 H“FhT
(h)S 12

8

5
b2D G1

32

5

hT
(h)

u0
2m0r

~B•“ !B

1
16

15u0
2m0r

~hT
(v)17hT

(h)!“B2J ,

and in the limit ofb@1 we obtain

U(PM)~B!5
3p

80F23/2
“S hT

(h)

b D 1
hT

(h)u0Am0r

B3
~B•“ !BG

1
p

4b F3

5
hT

(v)1
1

A2
hT

(h)G“B2

B2
.

Therefore, the nonlinear turbulent paramagnetic velocity
determined by both an inhomogeneity of the turbulence
an inhomogeneity of the mean magnetic fieldB. The latter
implies that there are additional terms in the turbulent pa
magnetic velocity}“B2 and }(B•“)B. These effects are
caused by a tangling of a nonuniform mean magnetic field
hydrodynamic fluctuations. This increases inhomogeneity
the mean magnetic field.

E. The turbulent magnetic diffusion

The dependence of the turbulent magnetic diffusion
mean magnetic fieldB is determined by equation

ĥ i j ~B!5Pi j ~b!Q~b!1K̂ i j ~L!1Di j , ~30!

where the functionsQ(b), Di j , and K̂ i j (L)5@Kpp(L)d i j
2Ki j (L)#/2 are given by Eqs.~A13!, ~A17!, and ~A18!,
respectively.

In the case of isotropic turbulence the turbulent magne
diffusion is given by

ĥ i j ~B!5~1/3!$@C4~b!d i j 1C6~b!Pi j #~5hT
(v)13hT

(h)!

22@C4~A2b!d i j 1C6~A2b!Pi j #~hT
(v)2hT

(h)!%

1Di j .

In the case ofb!1 and isotropic background turbulence th
result is given by

ĥ i j ~B!5d i j @hT2~2/15!hT
(b)b2#2~2/15!hT

(b)b ib j1Di j ,

and in the limit ofb@1 we obtain

ĥ i j ~B!5~p/5b!$d i j @~52A2!hT
(v)1~31A2!hT

(h)#

2@~3/2!hT
(v)1~5/23/2!hT

(h)#b i j %,

wherehT5hT
(v)1(5/3)hT

(h) , andhT
(b)5hT

(v)17hT
(h) .
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V. DISCUSSION

In this study the nonlinear mean-field dependencies of
hydrodynamic and magnetic parts of thea effect, turbulent
diffusion, turbulent diamagnetic, and paramagnetic veloci
for an anisotropic turbulence are found. Now we will app
the obtained results to magnetic dynamo. We first will d
cuss two types of nonlinearities in magnetic dynamo de
mined by algebraic and differential equations. Then we w
derive a nonlinear system of equations for axisymmetricaV
dynamos in both spherical and cylindrical coordinat
SphericalaV dynamo may be of relevance in convecti
zones of the Sun and solar type stars. TheaV dynamo in
cylindrical geometry may be of relevance in galaxies.

A. Dynamic and algebraic nonlinearities

We start with a dynamic nonlinearity. To this purpose,
derive a differential equation for the magnetic part ofa ef-
fect for an anisotropic turbulence. The induction equation
the magnetic fieldH is given by

]H/]t5“3~v3H2h“3H!. ~31!

The equation for the vector potentialA(t) follows from the
induction equation~31!

]A(t)/]t5v3H2h“3~“3A(t)!1“f, ~32!

whereH5“3A(t), A(t)5A1a, andA5^A(t)& is the mean
vector potential, andf is an arbitrary scalar function. Now
we multiply Eq.~31! by a and Eq.~32! by h, add them and
average over the ensemble of turbulent fields. This yields
equation for the magnetic helicityx (h)5^ap(x)hp(x)&:

]x (h)/]t522E~B!•B2x (h)/T2“•Fx ~33!

~see Ref.@11#!, whereE(B)5^u3h& is the electromotive
force, x (h)/T52h^h•(“3h)&, T;t0Rm is the characteris
tic time of relaxation of the magnetic helicity, andFx

5Veffx (h) is the flux of the magnetic helicity. In the case
one preferential direction~say, in the directionẽ) the effec-
tive velocity Veff523V/3017(ẽ•V)ẽ/1027(ẽ3D)/15, and
Di5a i j

(v)ẽj ~see Ref.@11#!. The magnetic part of thea tensor
is given by a i j

(h)(B)5a0
(h)F(b)d i j ~see Sec. IV B!, where

a0
(h)52x (h)(B)/(9hTm0r). Thus, the differential equation

for a0
(h) reads

]a0
(h)

]t
1

a0
(h)

T
1“•~Veffa0

(h)!52
4

9hTm0r
E~B!•B.

~34!

The dynamics of the magnetic part of thea effect depends
on the nonlinear electromotive forceE(B) which is deter-
mined by the algebraic equation~19!. Indeed,

E~B!•B5@a i j
(v)~B!1a0

(h)F~b!d i j #BiBj

2@ĥ ~“3B!1k̂­B̂#•B. ~35!

Therefore, the nonlinearity in turbulent mean-field dynam
includes both nonlinearities which are determined by al
braic equation~35! and dynamic equation~34!.
e

s

-
r-
ll

.

r

n

o
-

B. Nonlinear axisymmetric aVÀ dynamo

Using results presented in Sec. IV we derive equations
a nonlinear axisymmetricaV2 dynamo for spherical and
cylindrical coordinates. The mean magnetic field can be w
ten in the formB5Bp1Bt , whereBp5“3A(t,r ,u)ew is
the poloidal field andBt5B(t,r ,u)ew is the toroidal field.
The nonlinear mean-field equations are given by

]

]t S A

BD 5~ L̂1N̂!S A

BD , ~36!

where r ,u,w are the spherical coordinates, the angleu is
measured from the direction of the angular velocityV and

L̂5S Ds aww
(v)~r ,u!

DV̂ Ds
D , V̂A5

1

r

]~V,Ar sinu!

]~r ,u!
,

N̂5S Û11~z121!Ds aww
(v)F11aww

(h)F

0 Û1~z121!Ds
D ,

and Ds5D21/r 2 sin2 u, Û152(W•“)r sinu, Û5W•e�
2W1•“, W5z3(b)e� /r 2sin2u, W15r sinu W, z3(b)5
2(5/3)C6(b)1(7/6)C6(& b), z2(b)5(5/3)C6(b)
2(2/3)C6(A2b), z1(b)5(5/3)C4(b)2(2/3)C4(A2b),
F15C4(b)2C6(b)21, e'5er sinu1eu cosu and the
function F(b)5(3/b2)@12arctan(b)/b#. Equations ~34!
and ~35! read

]aww
(h)

]t
1

aww
(h)

T
52B

]A

]t
1z1~b!M̂ ~B,A!, ~37!

where aww
(h)(r ,u)52aww

(h)(r ,p2u) and M̂ (B,A)
5(1/r 2 sin2 u)@“(rA sinu)#•@“(rB sinu)#. In Eqs. ~36! and
~37! the coordinater and timet are measured in the unitsR*
andR

*
2 /hT ; theaww

(h) is measured in the unitsa* ; the angu-
lar velocity V is measured in the unitsV* ; the vector po-
tential of the poloidal fieldA and the toroidal magnetic field
B are measured in units ofRaR* B* and B* , where Ra
5a* R* /hT , D5RaRV is the dynamo number,RV

5V* R
*
2 /hT , R* is the radius of a star, andB*

5(rm0)1/2(hT /R* ). Since we consideraV2 dynamos the
terms;O(Ra /RV) are dropped in Eqs.~36! and ~37!, and
the componentaww of the tensora is only essential.

In cylindrical coordinatesz,R,w, Eqs. ~36! and ~37!

are valid after the changer sinu→R, and M̂ (B,A)5(1/
R2)@“(RA)#•@“(RB)#, Ds5D21/R2, V̂A5](V,AR)/
](z,R) and R* is the thickness of a disk,e'5eR and
ez5V/V.

Equations~36! and ~37! describe a closed nonlinear sy
tem including the algebraic and dynamic nonlinearities. F
simplicity we assumed that the nonhelical part of turbulen
is isotropic. We also assumed that“hT50, i.e., homoge-
neous turbulent diffusion. Note that the case of pure dyna
nonlinearity was studied analytically in one-mode appro
mation for axisymmetricaV2 dynamo in Ref. @10#,
whereby a formula for the magnitude of the mean magn
field as a function of the angular velocity and parameters
a solar-type convective zone was derived. Numerically,
case of the pure dynamic nonlinearity was studied in R
@22#. A complicated dynamics including appearance of
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chaotic behavior of mean magnetic field was found in R
@22#. Analytical and numerical analysis of Eqs.~36! and~37!
are subjects of future studies. Equations~36! and~37! can be
generalized to the cases of nonaxisymmetricaV2 and
a2V2 dynamos.

Now we discuss a form of the electromotive force in t
general case. In the isotropic case forb@1 the functions
a ÿ

(v)(B) and a i j
(h)(B) are proportional toB22 , whereas all

other turbulent transport coefficients,h i j (B), U(B) are pro-
portional toB21. This implies that the growth of the mea
magnetic field can be saturated only by algebraic nonline
ity. On the other hand, for anisotropic turbulence all turb
lent transport coefficients including the hydrodynamic part
the a effect are proportional toB21 for b@1. This implies
that the mean magnetic field cannot be saturated by algeb
nonlinearity alone. However, a combination of two types
nonlinearities~algebraic and dynamic! can result in a satura
tion of the mean magnetic field in an anisotropic case.

Note that in most astrophysical applications the condit
]a (h)/]t50 is not valid because the relaxation time of t
magnetic part of thea effect is very long, i.e.,T;t0 Rm.
For instance, this time for galaxies is larger than the lifeti
of the Universe. This implies that the nonstationary equat
~34! for the magnetic part of thea effect should be solved
Note also that there are two different cases:~i! with zero
mean magnetic field (B50) and~ii ! with a small mean mag
netic field. WhenB50 the magnetic helicity~and the mag-
netic part of thea effect! is very smallx (h)}Rm213/10 ~see
Ref. @23#!. On the other hand, even for very small me
magnetic field the magnetic helicity is not small~it is of the
order of the hydrodynamic helicity!.

Thus, in this study a nonlinear electromotive force for
anisotropic turbulence in the case of intermediate nonline
ity is calculated. The intermediate nonlinearity implies th
the mean magnetic field is not strong enough to affect
correlation time of turbulent velocity field. The case of
strong nonlinearity is a subject of future study.

APPENDIX A: DERIVATION OF EQ. „19…
FOR THE ELECTROMOTIVE FORCE

In order to calculate the integral in Eq.~18! we use an
identity

FE hi j ~k!kklt~k!exp~ ik•r ! dkG
r→0

5~4p!21E 1

r

]2

]r k ]r l
bi j ~r ! dr ~A1!

~see Ref.@20#!, wherebi j (r )5*hi j (k)t(k)exp(ik•r ) dk, and
we took into account that the Fourier transformation yie
ik j→]/]r j , 2f/k2→D21f[(4p)21*(f/r )dr . Integra-
tion in parts twice in Eq.~A1! yields

E 1

r

]2

]r k ]r l
bi j ~r ! dr52

4p

3
bi j ~r50!dkl

2E 1

r 3
bi j ~r !~dkl23r kl! dr

~A2!
f.

r-
-
f

aic
f

n

e
n

r-
t
e

s

~see Ref.@20#!, where we used an identity:I i jnm( l 53)5
2(4p/3)bn j„r50…d im , and I i jnm( l ,3)50, whereI i jnm( l )
5@*„r ibn j(r )/r l

… dsm# r→0, and the integration in the latte
integral is performed over the closed surface with an inter
normal. Now we take into account that

hnm
(N)5hnm

(0N)1c~112c!21~ f nm
(0N)2hnm

(0N)! ~A3!

@see Eqs.~12! and ~15!#. This yields

bi jk5« i jmKmk~l!1Ai jk , ~A4!

Ai jk5~2p!21«kmnE @sn j~r !2sn j~r50!#

3~dmi23r mi!r
23 dr , ~A5!

si j ~r !5l i j
(v)~r ,b!1l i j

(h)~r ,A2b!2l i j
(v)~r ,A2b!, ~A6!

l i j
(a)~r ,b!5E ci j ~k!t~k!

11c~b,k!
exp~ ik"r ! dk, ~A7!

Ki j ~l!5@5l i j
(v)~b!22l i j

(v)~A2b!13l i j
(h)~b!

12l i j
(h)~A2b!#/3, ~A8!

where bn54Bn /(u0A2m0r),c(b,k)5@(b•k)u0t/2#2,
l i j

(a)(b)5l i j
(a)(r50,b), ci j 5 f i j

(0N) when a5v, and ci j

5hi j
(0N) whena5h. For the calculation of the tensorbi jk we

have to specify a model of the background turbulence~i.e.,
turbulence with zero mean magnetic field!. We use the fol-
lowing model for the background anisotropic incompressi
turbulent velocity and magnetic fields:

tci j ~k!5
5

4
F Pi j ~k!S 2h̃T

(a)~k!

5
2mmn

(a)~k!knmD
12@d i j mmn

(a)~k!knm1m i j
(a)~k!2m im

(a)~k!km j

2kimmm j
(a)~k!#G , ~A9!

where the anisotropic part of this tensormmn
(a)(k) has the

propertiesmmn
(a)(k)5mnm

(a)(k) andmpp
(a)(k)50. Inhomogeneity

of the background turbulence is assumed to be weak, i.e
Eq. ~A9! we dropped terms;O„“(hT

(a) ;m i j
(a))…. Here

h̃T
(v)(k)5t f pp

(0N)(k)5hT
(v)w(k), and h̃T

(h)(k)5thpp
(0N)(k)

5hT
(h)w(k), m i j

(a)(k)5m i j
(a)(R)w(k)/3, where w(k)

5(t1k2k0)21(k/k0)27/3 ~see Sec. IV A!. The integration in
k space in Eq.~A7! yields

l i j
(a)~b!5l i j

(a)~r50,b!5L i j
(a)~b!1b i j g

(a)~b!,
~A10!

L i j
(a)~b!5C1~b!m i j

(a)1C2~b!~m in
(a)bn j1b inmn j

(a)!

1d i j @hT
(a)C4~b!1~1/4!C3~b!mps

(a)bsp#,

~A11!

g (a)~b!5~1/2!@C5~b!mps
(a)bsp12C6~b!hT

(a)#,
~A12!
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where the functionsCn(b) are defined in Appendix B. Fo
b!1 the functiong (a)(b)5(2/5)hT

(a)b2 and the function
L i j

(a)(b) are given by

L i j
(a)~b!5d i j FhT

(a)S 12
4

5
b2D2

8

21
mps

(a)bsbpG
1m i j

(a)S 12
22

21
b2D1~4/7!bn~m in

(a)b j1b imn j
(a)!.

For b@1 these functions are given by

L i j
(a)~b!5~p/16b!$2m i j

(a)16~m in
(a)bn j1b inmn j

(a)!

1d i j @~24/5!hT
(a)25mps

(a)bsp#%,

g (a)~b!5~3p/10b!@hT
(a)1~5/8!mps

(a)bsp#.

For an isotropic turbulenceg (a)(b)5C6(b)hT
(a) and

L i j
(a)(b)5d i j C4(b)hT

(a) . Now we calculateE i
(1)5bi jk

(1)Bjk ,
wherebi jk

(1)5« im jbmkQ(b), and

Q~b!5@5g (v)~b!22g (v)~A2b!13g (h)~b!

12g (h)~A2b!#/3. ~A13!

For b!1 the function Q(b) is given by Q(b)5(2b2/
15)(hT

(v)17hT
(h)), and forb@1 the functionQ(b) is given

by

Q~b!5
p

23/2b
S 3A2

5
hT

(v)1hT
(h)1

1

8
bsp~A2mps

(v)15mps
(h)! D .

~A14!

For an isotropic turbulenceQ(b)5(1/3)@C6(b)(5hT
(v)

13hT
(h))22C6(A2b)(hT

(v)2hT
(h))#. Now we use an iden-

tity « imnbnpBmp52@B3“(B2/2)# i /B22Pip(b)(“3B)p ,
where Pi j (b)5d i j 2b i j . This yields E i

(1)5@V(N)(B)3B# i

2ĥ i j
(1)(“3B) j , where the velocity V(N)(B)5(1/

2)Q(b)(“B2)/B2 describes an additional contribution to th
nonlinear turbulent paramagnetic velocity, andĥ i j

(1)

5Pi j (b)Q(b) determines an additional contribution to th
nonlinear turbulent diffusion. The total electromotive force
given by E5E(1)1E(2), where Ei

(2)5ai j Bj1bi jk
(2)Bjk and

bi jk
(2)5« i jmKmk(L)1Ai jk . Now we use an identityBjk

5(]B̂) jk2« jkl(“3B) l /2 ~see Ref. @24#!, where (]B̂) jk
5(Bjk1Bk j)/2. This yields

E(2)5âB1U3B2ĥ(2)~“3B!2k̂­B̂ ~A15!

where â i j (B)5(ai j 1aji )/2, Uk(B)5«k j iai j /2, k̂ i jk(B)
52(bi jk

(2)1bik j
(2))/2,

ĥ i j
(2)5~« ikpbjkp

(2) 1« jkpbikp
(2)!/45K̂ i j ~L!1Di j , ~A16!

Di j 5~« ikpAjkp1« jkpAikp!/4, ~A17!

and K̂ i j (L)5@Kpp(L)d i j 2Ki j (L)#/2, and
Ki j ~L!5@5L i j
(v)~b!22L i j

(v)~A2b!13L i j
(h)~b!

12L i j
(h)~A2b!#/3. ~A18!

For b!1 the functionKi j (L) is given by

Ki j ~L!5h i j ~B50!1~4/7!bn~b jm in1b imn j!

2
b2

3 S 4

5
d i j hT

(b)1
22

21
m i j

(b)1
8

21
d i j bspmps

(b)D ,

~A19!

where h i j (B50)5d i j hT1m i j , hT5hT
(v)1(5/3)hT

(h) , m i j

5m i j
(v)1(5/3)m i j

(h) , hT
(b)5hT

(v)17hT
(h) , and m i j

(b)5m i j
(v)

17m i j
(h) . For b@1 the functionKi j (L) is given by

Ki j ~L!5
p

48b
@~52A2!L i j

(v)~b!1~31A2!L i j
(h)~b!#.

For an isotropic turbulence

Ki j ~L!5~d i j /3!@C4~b!~5hT
(v)13hT

(h)!

22C4~A2b!~hT
(v)2hT

(h)!#.

Therefore the total electromotive force is given by Eq.~19!.

APPENDIX B

The functionsCk(b) are given by

C1~b!5
5

4 Farctanb

b S 1

5
2

6

7b2
1

1

9b4D 1
92

315
L~b!

1
169

189b2
2

1

9b4G ,

C2~b!5
5

4 Farctanb

b S 3

5
1

6

7b2
2

5

9b4D 2
64

315
L~b!

2
197

189b2
1

5

9b4G ,

C3~b!52
5

2 Farctanb

b S 11
18

7b2
1

5

9b4D 2
16

63
L~b!

2
451

189b2
2

5

9b4G ,

C4~b!5
3

35Farctanb

b S 72
5

b2D 13L~b!1
5

b2G ,

C5~b!5
25

4 Farctanb

b S 3

25
1

6

7b2
1

7

9b4D 1
16

1575
L~b!

2
113

189b2
2

7

9b4G ,
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C6~b!5
3

35Farctanb

b S 71
15

b2D 22L~b!2
15

b2G ,

where L(b)5122b212b4 ln(11b22). In the case ofb
!1 these functions are given by

C1~b!;12~22/21!b2, C2~b!;~4/7!b2,

C3~b!;2~32/21!b2,
-
,

-

,

id

s.
C4~b!;12~4/5!b2, C5~b!;2~16/63!b4 ln b,

C6~b!;~2/5!b2.

In the case ofb@1 these functions are given by

C1~b!;p/8b, C2~b!;3p/8b, C3~b!;25p/4b,

C4~b!;3p/10b, C5~b!;3p/8b, C6~b!;3p/10b.
-
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@24# K. H. Rädler, Astron. Nachr.301, 101 ~1980!; Geophys. As-

trophys. Fluid Dyn.20, 191 ~1982!.


